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1. Introduction

Stochastic dominance provides a way of analyzing risky decisions when a

decision agent’s von Neumann—Morgenstern (1947) utility function u is not

fully known but is presumed to be in a class U of real—valued functions defined

on a consequence space X. When p and q are probability mea9ures on a suitable

algebra of subsets of X, we sometimes say that p stochastically dominates q

with respect to U if ju(x)dp(x) > ju(x)dq(x) for all u E U for which the

expected utilities are finite.

Although stochastic dominance is relevant whenever decision alternatives

are described by probability measures , its most popular use involves situations

in which X is a set of real numbers with x preferred to y when x > y. This

context is emphasized in the introduction to stochastic dominance given by

Fishburn and Vickson (1978) and will be the context used for the present paper.

Def initions of various degrees of stochastic dominance in the real X setting

can be given without explicit mention of U classes, and I will follow this

approach here.

My purpose is to establish a general connection between uth—degree

stochastic dominance and the f irst n moments of probability measures whose

supports are bounded below, for all it E {l,2,...}. It will be assumed that

the measures are countably additive and that their supports are bounded below

by 0. The corresponding distribution functions F,G,... will be taken to be

continuous from the right with F(x) 0 for all x < 0 and F(x) - 1 as x -‘ °°.

The basic definitions and main theorem are presented and discussed in the

next section where the main theorem is observed to follow from two auxiliary

theorems. Proofs of the latter theorems are given in the final two sections.

These proofs are based solely on the distribution functions and will not involve

utility classes. 

— ‘ —-—
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2. Definitions and Theorems

Let F be the set of all right—continuous distribution functions on the

real line with F(x) — 0 for all x < 0 for each F € F. For each F E F let

p — F and recursively define

F’~~
’ (x) ~F

h1(y)dy for all x > 0 and n E {l ,2,.. .

Nonstrict (>) and strict (>~) nth—degree stochastic dominance relations are

then def ined on F as follows:

F > C 1ff F~ (x) < G~(x) for all x E [O,~ ) ,

F > G if f F ~~~G and F > G.
n —it

These relations are transitive and increasingly more inclusive: > C> C . . .

and > c 
2 

where C denotes proper inclusion. Utility classes that are

congruent with the first few stochastic dominance orders are presented in

Fishburn and Vickson (1978, pp. 102—113). For example, F > C if f ju(x)dF(x) >

ju(x)dG(x) for all nondecreasing u on [0 ,co) for which the expectations exist ,

and F > C if f ,fudF > judC for all nondecreasing and concave u on [O ,~ ) for

which the expectations exist. The corresponding theorems for (> ,>) and (> ,>)

respectively involve strictly increasing u and strictly increasing—strictly

concave u Congruent utility classes for the third—degree relations are the

subsets of the second—degree classes in which first derivatives exist and are

convex L)  or strictly convex (> ).  Although it is traditional to define

F G 1ff F3 (x) < G 3(x) for all x and the mean of F is as great as the mean

of C (e.g., [Wh itmore, 1970], (Fishburn and Vickson, 1978]), we shall see that

the condition on the means is redundant in the present formulation.

- - .—~~ - —----‘- -.- —-- —•—‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .~~~~:.. - -  
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The moment sequence for F E F is 31(F) — (4~34~i4~...) where 4 —

jdF(x) — 1 and — fx~’dF(x) for each it > i. The part of this sequence

through the nth moment will be denoted as u~(F) — (4g. . . ~~~~~ Our main

theorem will be based on binary relations >* Ofl (31(F) : F € F} def ined

lexicographically on the basis of as follows:

31(F) >~ ii(C) 1ff 31 (F) ~ i (G) and (_1)k~
1
3~
k >( 1) k— 1 

31
k

for the smallest k for which #

For example , 31(F) >* ii(C) 1ff 31’ > ~~~ and p(F) >“ ~i (G) 1ff either ~i >F C 2 ~~
‘ G

or (~ — ~~1, 31
2 < 312 )~ Alternatively, u(F) >~‘ u(C) 1ff either F has theF C r  C 2

greater mean or the means of F and C are equal and F has a smaller variance

than G.

Theorem 1. If F,G E F and the moments of F and C through order it are

finite, then i(F) >* 31(C) if P > C.

For discussion purposes the next three paragraphs assume that the moments

involved therein are finite.

The it — 1 part of Theorem 1 says that if F > C then the mean of F must

be greater than the mean of C. Equivalently, if < 34 then F cannot

strictly first—degree stochastically dominate C. This fact seems to be widely

known.

It appears to be less commonly recognized that F > G implies that either

> 34 (in which case the inequality on second moments could go either way) or

(4 — 34, 4 < 34) . Parts of this result have been noted by Hanoch and Levy

(1969) , Rothschild and Stiglitz (1970) and Fishburn and Vickson (1978, p. 78).

_ _  .
~~~~~ .
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For it — 3, Theorem 1 says that F > C entails either 311 > 311 or

(34 — i4~ 4 < 34) or (i4 — 34, i4 — 34, 34 > 34) . Although par:s of

this have been noted by Whitmore (1970) and Fishburn and Vickson (1978,

pp. 78—82) for special cases, the complete result appears to be previously

unknown. In like manner , Theorem 1 for it > 4 appears to be new.

Since F > C implies 311 > 311 when these means are finite—and even
3 F —  C

when one or both are infinite—our definition of > (or > ) is formally
3 

_
3

equivalent to the traditional definition. It should be noted however that

upper—bounded definitions are not so simply related. In particular, if [O ,b]

with b f inite includes the supports of F and C then, as shown in Fishburn (1976),

it is possible to have 34 < 34 when F 3 (x) < G 3 (x) for all x E (0,b]. In this

case, when F 3 (x) < C 3 (x) is specified only over an interval that includes the

supports of F and C, it is necessary to include the stipulation 34 > 34 in the
def inition o F C if we want to be congruent with the type of U class

mentioned in the opening paragraph of this section.

The proof of Theorem 1 can be based on the following two auxiliary

theorems that will be proved in the next two sections.

Theorem 2. If F,C E F , if F > C for some m E (1,2,. ..}, and if the

moments of F and C through order it + 1 > 1 are f inite with 34 
— 31~ for

It — 0,1,...,n, then ( 1) it 
3~

fl > ( 1) 11 
l•j
fl+

Theorem 3. If F,G € F, if F >
~, 
C, and if the moments of F and C throu~~i

order n > 1 are finite with 34 — for k — 0,1,.. .,n — 1, then

> (—l)” ’  ia~ .

The latter theorem implies that 31 (F) — 31 (0) cannot be true when F > C,

and the former theorem says that if F stochastically dominates C in the

_ _ _  .~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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nonstrict sense for any finite degree and if 11~~
(F) — 11

~~
(G) then >

if it is even and < 31~~
’ if it is odd , provided that the moments

involved are finite. Theorem 1 follows iimnediately from Theorems 2 and

3: if F > C then F > C, hence either ii(F) >~ 11(0) or u
~
(F) — 31

~
(C) by

Theorem 2; since Theorem 3 rules out p (F) — u~ (C) we are lef t with 31(F) >~

11(G) .

3. Proof of Theorem 2

We begin with a lemma that leads to the proper sense of the inequality

in the conclusion of Theorem 2.

Lemma 1. For any~ H £ F with finite moments through order it and for all

m > n > O a n d x > O  let

Tn m (H
~
X) - ~ (_l)~~ 1(~)31~ /xk + 5 (1 - y/x)mdH(y). (1)

k—o y o

t.

Then T (H,x) — 0 11(0) — 1 and , for all other H € F , T (H,x) > 0 if

it is Odd, 
~~~~ 

Tn m OI,x) < 0 if n is even.

Proof. If H assigns probability mass 1 to y — 0 then (1) gives Tn m (H
~
x) —

—l + 1 — 0. Assume henceforth that 11(0) < 1. When in the right hand side

of (1) is replaced by Jy
k
dH(y) + j’y

k
dH(y) and (1 - Y/X)

m is expanded
0 x

binomially, we get

T m~~’~~ 
— z (_l)IC(~)(y/x)

k}dH(y) + ,r{ ~fl~ 0 k—n+z x k—o

x
— JA m

(
~~~

I
~~

) + SB 
~~~~~~~~~ 

(2)

- 

0 ~~‘ x
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where the A and B terms are defined in context as the sums under the

integrals and z — y/x with z E (0,1] for A and z E (l,°’) for B. We consider

A and B in turn.

First, An m (O) — 0 for all in > it > 0 and, since A0~~
(z) — (1 — z)m — 1,

A
0~~
(z) < 0 for all z E (0,1). Since

A
~,m

(Z) — dA
~~~

(z)/dz — _mA
~...1 ,~ _ 1 (z) for in > it > 1 and z > 0,

it follows that A
m

(z) > 0 for a > 0, hence by continuity and Ai m (O) —

that A (z) > 0 for all z E (0,11 and m > 1. Then A’ (z) < 0 for a > 0
t ,m 2 ,in

and in > 2 , so that A 2 m (z) < 0 for all z E (0 ,1]. The obvious continuation

of this process gives

A
~~~~

(Z)  > 0 for all a E (0,1] if it is odd,

A
~~~

(Z) < 0 for all z E (0,1] if it is even,

along with A (0) — 0.
n,m

For the B part we note first (e.g. [Feller, 1957, p. 61]) that B
~~~

(l) —

(_l)~~ 1(m 1)so that Bn,m
(l) > 0 if it is odd, and Bn m (l) < 0 if it is even.

In addition,

B (z)——m B (z)f o rm > n > l a n d z > ] ..
n,m n-1,m—i — —

Since B (a) —1, this implies that B (a) > 0 for in > 1. and a > 1, hence
o ,m 1,

that B (z) > 0 for all a > 1 since B (1) > 0. Then B (z) < 0, hence
i ,m

B (a) < 0 for all z > 1 since B (1) < 0. The continuation of this process
2 ,m — 2 ,m

shows that 

—--. -.--- ~~~~~~ -—.__-—-—--~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ ______
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Bn m (a) > 0 for all a E [l,°o) if a is odd,

Bn m (Z)  < 0 for all a E (1,00) if n is even.

These conclusions along with those for A and the hypothesis that H has positive

probability mass on x > 0 then yield the final conclusions of Lemma 1 in view

of (2). Q.E.D.

For Theorem 2, suppose that F,G E F have finite moments through order

n + 1 > 1 and that 31 (F) = ii (G), i.e. 34 = for all k < a. Assume also

that F >  C for some m. Since > C >  for alu m, select in > n with-in -in -01+ 1

F C. Then, by the definition of and Fishburn (1976) ,

x x
f( x  — y)indF(y) < ,f(x — y)indo(y) for all x > 0.

Since 31~(F) — 31~ (G) , it follows that

T (C,x) > T (F ,x) for all x > 0. (3)
a,m n,m

Suppose first that 0(0) — 1 so that T
~~~

(C,x) = 0 by Lemma 1. Then

O 
~ 
T
~~~

(F,x) for all x > 0. It follows that either F(0) — 1 and F = C, in

which case ~r’ 
— 

~~~~ 
— 0, or that F(0) < 1, in which case Lemma 1 implies

that 0 > T (F,x) for x > 0 and hence that n is even. But with n even,

11+1 
— 0 in the latter case. Hence the conclusion of

Theorem 2 holds if 0(0) — 1.

Assume henceforth that 0(0) < 1, in which case F(0) < 1 also. Then (3)

applies with neither term ever equal to zero according to the last part of

Lemma 1. We shall prove that

T (F,x) 31~~
’

l~— 
(4T (G,x) n+ix-’~ n ,a 

-~~~~~-~----- — ~~~~~--~._--, .- — -~~~~ ----- .--- —- -~~~~~~~~~~ -.. --..—--~~~~~~ - -.--- .~~ ---—---



which, in view of (3) and the final conclusions of the lemma, implies that

(_1)fl
31
fl+1

> (_1)
t~1

f l t
, as desired for Theorem 2. Since u r n  T

~~~
(H,x) —

—34 + 1 — 0, we differentiate the numerator and denominator of the lef t

hand side of (4) with respect to x in anticipation of using l’Hospital’s

rule. When m/x2 is canceled from the numerator and denominator after the

differentiations have been completed, we get

d T
~~~

(F,x)/dx 
— ~~o 

(_l)k+t~uI;
1
~ 31

k+1
/X
k 
+ f(1 - y/x)

in_t
ydF(y)

d T
~~~

(G,x)/dx 
(_l)k+1(

m_
1)31

k+1
/Xk + 5(1 - y /x)

in
~~~ydG (y)

If n — 0 then the numerator and denominator of (5) respectively approach

and as x -~~ 00 by the monotone convergence theorem (e.g., [Loeve, 1960,

p. 124]), and a single application of ].‘Hospital’s rule shows that (4) holds.

If n > 1, then the numerator and denominator of the right hand side of (5)

both go to zero (—34 + 34 and —i4 + i4) as it ~ 00 • In this case methods

similar to those used for Lemma 1 show that both parts of the right hand side

of (5) have constant nonzero sign. We then differentiate the numerator and

denominator of the right hand side of (3) and cancel (in — l)/x 2 to get

::~ 
(...l)k+1(m 2)34+2/xk + 5(1 - y/x)i n 2 y2dF(y)

:~: 
(...l)k+t(m a)U

k+2/xk + 5(1 — y/x) i n 2y2dG (y)

If n — 1 then (4) holds by two applications of l’Hospital’s rule since the limit

of the expression just written is 4/I.z~
. If n > 1, we continue in the indicated
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manner until we arrive at the ratio 5(1 — y/x)
i n t

~
_ 1

y
i
~~

t
dF (y) ff( l  — y/x)

in
~~

_ l
y~~

1

dG(y) , whose limit is Hence a + 1 app lications of 1’Hospital’s
rule yield a general verification of (4).

4. Proof of Theorem 3

Throughout this section we use the convention that to = 1 when t — 0. In

anticipation of using the monotone convergence theorem later we shall first

prove

Lemma 2. ~~ppose H E F has finite moments through order n — 1. with a > 1,

and O < y < x w i t h x > O .  Then

(—l) ’[n!R”(y) + ~ (_l)n_k+i(n) k~~~~y
’
~~
’]

~ (—l)~~[n!H~ (y) + 

k—i 

(l) fl_k+1(fl) ky
k_1 I

k—i z—o

Proof. We note first that

~ (_l)
n_k+1(~) k31~~~y~~ ~ ~~(l )n k(n

;1)y
k
31
n_k_ 1

,
k—i k—o

~ (_l)n_k+I(fl) ky1’’ ~~~~ dH(a) n 
‘
~~
‘
(l) n_k(n_1)y

k Ik i  a 0  k—° z—o

x

L 

. n- i
— —n J (y — a) dR(z),

z—0

it a-inIH (y) — a J (y — a) dH(z) ([Fishburn , 19761).
z—0

By the first two of these, the first inequality in the conclusion of Lemma 2

holds if and only if  

~ -, ——.. - —~~~~~-~~~~~~ -_ - - -
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— I z~~”— dH(z)}]> 0,

which is true if and only if

(l) k(fl l) k j  z’~
4
~~
’dH(z) > 0.

k—o z—x

But this is true since its left hand side equals 5 (z — y)~~~dH(z). By

the final two expressions in the opening sentence of this proof, the second

(> 0) inequality in Lemma 2 holds if

( 1 ) U[_ ~ 5 (y - z)~~~dH(z)] > 0,
z=y

which is true since its left hand side equals a f (a — y)’~~
’dH(z). Q.E.D.

z—y

When dy is replaced by e~d(l  — e~~
’) in the following expressions, with

1 — e~~’ a distribution function in F , Lemma 2 in conjunction with the monotone

convergence theorem shows that if 31~~~is finite then

(_1) fl 
5 [n !H”(y) + (l) n_k+i(fl)kPfl_kY

k_l
ld

y o  k—i

— u rn  ((-l)~’ I [n!H it
(y) + ~ (l)

n_
k+1(fl)kyk_i fz~~~dH(a)]dy}.

y o  k—i z—o

The expression within braces af ter lim reduces as follows :

(_ 1) it
[f l3 }jfl+1

(~~) ÷ ~ (l) fl..-k+1
(fl) k J z~_’~dH(z)]

k—i a—o

— (_1)nt[i (x — y)~ dH(y) + ~ ( l)fl_k+I(fl)xk J Y ~
l k
dH(Y)]

y—o k—i y—o

_ _
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- (_ l) nI ! ~ (...l)
n_k
(~) x

ky~~~ciH(y) + ~ (l)
a_k+i
(~)x

k f yit_kd11~y~
Ly”bo k—o k-i y-o J

x
1• it

— j  y dH(y).
y-o

Therefore, when ~~~~ is finite,

f (n!R~ (y) + ~ (l) n-k+1(tt) k31 
t
y
k
~

i ]dy - (_1) r~p~~ (6)
y o  k-i

Finally, as in the hypotheses of Theorem 3, suppose that F > C and

that the moments of F and G through order n are finite with 4= ~~ for all

k < a — 1. Then, since F (y) < C (y) for all y, and F (y) < G (y) in a non—

degenerate interval within [0,00), (6) shows immediately that (_1)n31~ < (_1) fl 
31
n
•

-
~~~~~~~~~~~~~~~~~~~~ -~~~~ 

-

~~~~~~

-

~~~~ 
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